Where have all the gardens gone?
An investigation into the disappearance of back yards in the newer Australian suburb

Tony Hall
Where have all the gardens gone?
An investigation into the disappearance of back yards in the newer Australian suburb

Tony Hall
The Urban Research Program acknowledges the generous support provided by Brisbane City Council in the production of the Urban Research Program publication series.
About the Urban Research Program

The Urban Research Program (URP) was established in 2003 as strategic research and community engagement initiative of Griffith University. The strategic foci of the Urban Research Program are research and advocacy in an urban regional context.

The Urban Research Program seeks to improve understanding of, and develop innovative responses to Australia’s urban challenges and opportunities by conducting and disseminating research, advocating new policy directions, and by providing training assistance. We aim to make the results of our research and advocacy work available as freely and widely as possible.

Urban Research Program publication series

URP Issues Papers tackle current problems and challenges, and advocate potential new directions in Australian urban policy. URP Research Papers impart findings and conclusions from our research program.

The Issues Papers and Research Papers are edited by Jago Dodson, Research Fellow in the Urban Research Program. Email: j.dodson@griffith.edu.au.

All URP publications and can be downloaded from our website free of charge:

www.griffith.edu.au/urp

Hard copies are available for purchase. Contact via email, urp@griffith.edu.au.

About the Author

Tony Hall is an Adjunct professor with the Urban Research Program at Griffith University and is Emeritus Professor of Town Planning at Anglia Ruskin University, UK.

Email: tony273@bigpond.net.au

The additional assistance of Andrew Hubbard, Research Scholar in the Urban Research Program, with the editorial preparation of this paper is gratefully acknowledged.
Acknowledgments

The following practitioners made helpful observations that have contributed to the development of the argument of this paper:

- Marco Calvino, Civic Steel Homes
- Mike McKeown, Delfin Lend Lease
- Martin Clark, Thuringowa City Council
- Peter Rawlinson, Tony Rea and Steven Yates, Pine Rivers Shire Council

Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>EPOA</td>
<td>Essex Planning Officers’ Association</td>
</tr>
</tbody>
</table>
Table of Contents

Acknowledgments... 1
Glossary... 1
Introduction .. 1

The morphological analysis

- Method .. 1
- Visual inspection .. 1
- Parameters measured ... 1
- The initial inspection ... 4
 - Selection of examples ... 4
 - Selection of comparators ... 4
 - Visual inspection of broad areas ... 5

Detailed analysis - The older suburb

- Queensland .. 11
- Victoria ... 17
- New South Wales .. 17
- Western Australia .. 20

Detailed analysis - The newer suburb

- Comparators from the USA ... 21
- Overview ... 23

What has been written?

- Why should this disappearance be a problem? ... 24
 - The advantages of private amenity space ... 24
 - The role of plan-form .. 25
 - The issue of garage location ... 26
 - The issue of plot coverage .. 26
 - Space for trees .. 26
 - Natural ventilation ... 27
 - Summary of disadvantages .. 27
 - The issue of density – some British examples .. 28

Some examples from Adelaide

- Outer-suburban Adelaide .. 31
- Port Adelaide ... 33
- Summary ... 35

Why is it happening?

- The issue of consumer choice .. 36
 - Location and property prices ... 36
 - Comparison with the inner and central city ... 36
- The role of house builders .. 36
- Why are the houses an acceptable purchase? .. 38
- Why are the layouts allowed? ... 38
- What can be done? ... 39
 - The justification for intervention ... 39
 - Action through the planning system ... 40

Conclusion .. 40

References .. 42
List of Figures

Figure 1: Gold Coast, Queensland, aerial view ..5
Figure 2: Spearwood, Perth, aerial view ...6
Figure 3: Camp Hill, Brisbane, aerial view ..7
Figure 4: Camp Hill, Brisbane, street scene ..7
Figure 5: Camp Hill, Brisbane, profile of the road width7
Figure 6: Kew East, Melbourne, aerial view ..8
Figure 7: Kew East, Melbourne, street scene ..8
Figure 8: Herbersham, Mount Druitt, Sydney, aerial view9
Figure 9: Herbersham, Mount Druitt, Sydney, street scene9
Figure 10: Spearwood, Perth, older development, aerial view10
Figure 11: Spearwood, Perth, older development, street scene10
Figure 12: Labrador, Gold Coast, aerial view ..11
Figure 13: Carina, Brisbane, aerial view ...12
Figure 14: Carina, Brisbane, street scene ...12
Figure 15: Hendra, Brisbane, aerial view ..13
Figure 16: Hendra, Brisbane, street scene, gated development13
Figure 17: Hendra, Brisbane, street scene, adjacent development14
Figure 18: Forest Lake, Brisbane, aerial view ...15
Figure 19: Forest Lake, Brisbane, street scene ..15
Figure 20: Springfield Lakes, Brisbane, aerial view ..16
Figure 21: Springfield Lakes, Brisbane, street scene ..16
Figure 22: Springfield Lakes, Brisbane, exposed side and back of a dwelling16
Figure 23: Meadow Heights, Melbourne, aerial view ...17
Figure 24: Rooty Hill, Mount Druitt, Sydney, aerial view18
Figure 25: Rooty Hill, Mount Druitt, Sydney, street scene18
Figure 26: Rooty Hill, Mount Druitt, Sydney, front of a house on a “battleaxe” lot ...19
Figure 27: Meacher Street, Mount Druitt, Sydney, street scene19
Figure 28: Meacher Street, Mount Druitt, Sydney, aerial view20
Figure 29: Spearwood, Perth, newer development, street scene21
Figure 30: Spearwood, Perth, newer development, aerial view21
Figure 31: Columbus OH, USA, aerial view ..22
Figure 32: Rocklin, Sacramento CA, USA, aerial view ..22
Figure 33: Sun City, Phoenix AZ, USA, aerial view ..23
Figure 34: Alternative plan shapes ..25
Figure 35: The issue of plot coverage ...26
Figure 36: Letchworth, UK, map ...29
Figure 37: Letchworth, UK, street scene ..29
Figure 38: Bishop’s Mead, Chelmsford, UK, layout ..30
Figure 39: Bishop’s Mead, Chelmsford, UK, street scene30
Figure 40: Smithfield Plains, Adelaide, aerial view ..32
Figure 41: Blakeview, Adelaide, aerial view ...33
Figure 42: Port Adelaide, aerial view ..34
Figure 43: Port Adelaide, view from the living room into the back garden34
Figure 44: Port Adelaide, street scene ...35
Figure 45: An example of the standard British volume housebuilder product37
List of Tables

Table 1: Morphological data ...3
Table 2: Tenure and occupancy ...4
Table 3: Data from the British examples ...28
Table 4: Density and garden area for exemplar UK housing estates by type31
Table 5: Data from the Adelaide examples ..35
Introduction

The disadvantages of the low-density car-based suburbs that surround Australian and US cities are well known and widely debated. These include facilities located to the disadvantage of non-car users, wasteful use of land, cost of infrastructure, time and energy expended on driving, low incidence of social contact and lack of exercise. Nevertheless, the older Australian suburb also has compensating advantages for both the residents and the wider community. This includes a higher degree of bio-diversity, the presence of trees also provides shade, modifying the microclimate and giving aesthetic pleasure. The planted areas around the dwelling also aid the process of storm drainage by retaining water and reducing run-off. The private amenity space around the dwelling can accommodate not just a garden for the pleasure of the occupants but also barbeque facilities and an in-ground swimming pool. These not only benefit the residents directly but also facilitate social interaction with friends and neighbours. In some parts of Australia, notably Queensland, use is made of verandas to provide outdoor living sheltered from the sun. Although very large, all encompassing roofs may be employed, a significant part of the space under them is open to the air and to the surroundings.

The more recent suburbs, however, display a disturbing trend, signified by the problematic design and layout of dwellings. The dwelling now extends near to the boundary of the plot and, in consequence, near to adjoining dwellings. There is very little private amenity space to the rear of the dwelling, in extreme cases none at all. Houses are predominantly single-storey, with only a proportion rising to 1½ or two storeys. There is little in the way of balconies and verandas. The design is square or deep-plan and incorporates an integral double garage greatly reducing the scope for natural lighting and ventilation, windows are often small and tinted. Normally only one room provides an outlook to the front and surveillance of the street. While the disadvantages of suburban living still apply, the advantages referred to above have disappeared.

This paper provides a quantitative analysis of this change to the morphology of the Australian suburb. Comparisons are made with selected examples in the USA and UK. The effects and possible causes of the change are discussed and remedies suggested.

The morphological analysis

Method

Visual inspection

The first step in the analytic method was a visual inspection of aerial photographs of urban areas using Google Earth. Fortunately the different types of form being investigated stood out clearly and it was also possible to identify recent construction which stood out clearly by virtue of the different colour of the roads and other paving. Examples of old and new suburbs were selected. No attempt was made to calculate the frequency of occurrence of the particularly problematic layouts, as resources were not available for the task. However, in practice, a clear distinction emerged between cities where they were frequent and very easy to find and those where they were almost entirely absent and very difficult to find. In other words, the degree of occurrence of these layouts did not vary continuously: it was either frequent or negligible.

Parameters measured

Once an example had been selected, an image of the aerial view was retained and measurements made of the parameters of the urban form using Google Earth. The choice of parameters used was based on urban design values and on factors relating to the development process. Urban design is concerned with spaces contained by buildings and so the spaces between the dwellings, front-to-front for the public space and back-to-back for the private space, were measured.
Carriageway widths were also noted. However, these distances did not necessarily reveal the full amount of back garden space available, as it was affected by the position of the rear plot boundary. The distance from the rear of the building to the plot boundary was, therefore, also measured. Plot sizes and dwelling footprints were recorded as they not only affected garden sizes but stemmed from the economic and regulatory pressures on the development process. In reality, for many sites, the plot and dwelling dimensions were highly variable. In order to tabulate the results, they were converted to areas and expressed as a range of values.

One possibly significant parameter that was not measured was the set-back of the dwelling from the front boundary of the plot, facing the road. This was because of the difficulty of measuring in from the aerial photographs. Whereas in the older suburbs there was usually a fence in this position the newer suburbs usually had open plan frontage, in the American style, and the front edge of the plot as a legal boundary could not be accurately determined. This also meant, unfortunately, that the measurement of plot depth was not always an accurate one.

An underlying issue was whether the problems observed resulted from both commercial pressures and public policies calling for higher residential densities. The net density was therefore calculated. Table 1 shows the results for all the examples. One hypothesis about the cause of the problem was that the high proportion of dwellings in Australia bought as an investment and then rented would lower level of commitment to issues of house design and layout. Where possible, the proportion of rented dwellings was obtained from the 2001 Census for the nearest approximating collection district. Data were also extracted from the Census for the proportion of dwellings with only one or two persons resident, as it could be claimed that larger dwellings were a response to larger households. On the other hand, the presence of larger household in dwellings without garden could be seen as potentially problematic. Table 2 shows the tenure and occupancy data.
<table>
<thead>
<tr>
<th>Older Australian Suburbs</th>
<th>Net density</th>
<th>Typical distances</th>
<th>Area ranges</th>
<th>Plot coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dph</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Brisbane - Camp Hill</td>
<td>11</td>
<td>30</td>
<td>30</td>
<td>10-20</td>
</tr>
<tr>
<td>Melbourne - Kew East</td>
<td>11.6</td>
<td>22-36</td>
<td>29-37</td>
<td>15-28</td>
</tr>
<tr>
<td>Sydney - Mount Druitt,</td>
<td>13</td>
<td>34</td>
<td>16</td>
<td>8-15</td>
</tr>
<tr>
<td>Herbersham</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perth - Spearwood 1</td>
<td>9.3</td>
<td>33</td>
<td>27</td>
<td>14-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Suburban Developments</th>
<th>Net density</th>
<th>Typical distances</th>
<th>Area ranges</th>
<th>Plot coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dph</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Brisbane - Carina</td>
<td>20</td>
<td>21</td>
<td>4-5</td>
<td>3</td>
</tr>
<tr>
<td>Brisbane - Hendra 1</td>
<td>30</td>
<td>13-14</td>
<td>4-6</td>
<td><1-3</td>
</tr>
<tr>
<td>Brisbane - Hendra 2</td>
<td>21</td>
<td>21</td>
<td>1-5</td>
<td>2-3</td>
</tr>
<tr>
<td>Brisbane - Forest Lake 1</td>
<td>13</td>
<td>26</td>
<td>8-11</td>
<td>3-7</td>
</tr>
<tr>
<td>Brisbane - Forest Lake 2</td>
<td>21</td>
<td>24</td>
<td>9-11</td>
<td>4-7</td>
</tr>
<tr>
<td>Brisbane - Springfield</td>
<td>16</td>
<td>20</td>
<td>6-16</td>
<td>2-3; 6-9</td>
</tr>
<tr>
<td>Lakes 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brisbane - Springfield</td>
<td>14</td>
<td>23</td>
<td>10-15</td>
<td>8</td>
</tr>
<tr>
<td>Lakes 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brisbane - Springfield</td>
<td>18</td>
<td>23</td>
<td>3-12</td>
<td><1-8</td>
</tr>
<tr>
<td>Lakes 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Coast - Labrador</td>
<td>10.5</td>
<td>27-30</td>
<td>3-4</td>
<td>1.5-2</td>
</tr>
<tr>
<td>Melbourne - Meadow Heights</td>
<td>18.5</td>
<td>21-26</td>
<td>6-16</td>
<td>2-8</td>
</tr>
<tr>
<td>Sydney - Mount Druitt,</td>
<td>19</td>
<td>25</td>
<td>3.5-10</td>
<td><2; 5.5</td>
</tr>
<tr>
<td>Rooty Hill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydney - Mount Druitt,</td>
<td>18</td>
<td>23</td>
<td>1.5-8</td>
<td><2</td>
</tr>
<tr>
<td>Meacher St.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perth - Spearwood 2</td>
<td>13.6</td>
<td>24</td>
<td>4-6</td>
<td>3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American Comparators</th>
<th>Net density</th>
<th>Typical distances</th>
<th>Area ranges</th>
<th>Plot coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dph</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Columbus OH</td>
<td>10.3</td>
<td>29</td>
<td>24-30</td>
<td>14</td>
</tr>
<tr>
<td>Rocklin CA</td>
<td>7.4</td>
<td>27</td>
<td>24-30</td>
<td>14</td>
</tr>
<tr>
<td>(Sacramento)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun City AZ</td>
<td>9.6</td>
<td>26</td>
<td>26-32</td>
<td>14-15</td>
</tr>
<tr>
<td>(Phoenix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Tenure and occupancy

<table>
<thead>
<tr>
<th></th>
<th>Rented dwellings</th>
<th>Person usually resident</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Older Australian Suburbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brisbane - Camp Hill</td>
<td>19</td>
<td>34</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Melbourne - Kew East</td>
<td>18</td>
<td>21.5</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>Sydney - Mount Druitt, Herbersham</td>
<td>12.5</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Perth - Spearwood</td>
<td>12</td>
<td>7</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>New Suburban Developments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brisbane - Carina</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Brisbane - Hendra</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Brisbane - Forest Lake</td>
<td>31</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Brisbane - Springfield Lakes</td>
<td>30*</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Gold Coast - Labrador</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>Melbourne - Meadow Heights</td>
<td>18</td>
<td>6</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Sydney - Mount Druitt, Rooty Hill</td>
<td>20</td>
<td>10</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Sydney - Mount Druitt, Meacher St.</td>
<td>21.5</td>
<td>21</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Perth - Spearwood</td>
<td>18</td>
<td>19.5</td>
<td>28.5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Data are from 2001 census for nearest approximating collection district
- * Currently unpublished research at University of Queensland
- Δ Development too recent for reliable data

The initial inspection

Selection of examples

The search concentrated on the Australian state capitals, with the exception of Hobart because of its smaller size and lower pressures for development. The reason for selecting examples from different cities was to identify trends that might be a result of local regulations. Examples of the problem layouts were common in all the cities examined except Adelaide. Examples for study were chosen from each of Brisbane, Melbourne, and Perth and Sydney. In addition, two examples of recently built suburban developments in Brisbane were studied that, while not as extreme as the other examples showed the same trends. They were typical of current standard large-scale schemes by reputable developers and could not be characterised as untypical or be open to criticism for generally poor standards aside from the shortcomings discussed here.

Examples of older, more traditional, suburbs were selected for each of the four cities. In the case of Perth and Sydney it was possible to find ones that were very near (in the case of Perth, adjacent) to the recent examples and were, therefore, likely to subject to the same local planning regime.

Selection of comparators

Searches for examples were made outside of Australia in countries with comparable patterns of suburban development. It proved difficult to find examples of the type of form criticised here in...
both North America and New Zealand. This raised the issue of why and, to obtain a lead into possible answers, examples of recent outer suburban development in the US were collected and measured, with three examples analysed in detail. One was collected from near Columbus OH, a city often taken as typical of middle America and one from near Sacramento CA as typical of the West Coast. The third was taken from Sun City, near Phoenix AZ, often cited in planning literature as one of the most remarkable examples of the “edge city”.

Visual inspection of broad areas

Figure 1 shows an aerial view of part of the Gold Coast in South East Queensland, around the suburb of Labrador. The contrast between the left and right hand sides of the picture was immediately noticeable. On the right were the comparatively older residential areas with modest dwelling footprints and significant tree cover. On the left were the newer developments with large dwelling footprints and few trees. The continuity of the area covered by the newer type of suburban form stood out. A small section of this area was analysed in more detail.

Figure 1: Gold Coast, Queensland, aerial view

Figure 2 shows an aerial view of part of the suburb of Spearwood on the south of Perth. The comparatively older development is on the right and the newer on the left. Although the house footprints in the older development were fairly large, the difference between the forms from two periods was again clear.
What was very significant here was the disjunction in both space and time. There was no evidence of gradual change. Although there was clearly variation in the detailed dimensions and style of the dwellings the two types of form discussed in this paper stood out as uniform phenomena. Before a certain date, suburban form incorporated back gardens of useful size and shape and a significant coverage of trees, after this date, these were absent.

Detailed analysis - The older suburb

Figure 3 shows an aerial view of part of the suburb of Camp Hill QLD, 5.7km southeast of the centre of Brisbane. It contains houses and gardens set out in a rather formal grid pattern at a net residential density of 11 dph. The houses were generally of the “Queenslander” type, the vernacular architecture of the State. Originally conceived as a single storey dwelling raise on stilts, the space under the house is now frequently used for car storage and, sometimes, additional living space, creating what is, in effect, a two-storey structure. An example is illustrated by Figure 4. In this locality, however, the dwellings, were predominantly single storey. The locality was notable for the number of trees both in front and behind the houses. The front-to-front and back-to-back distances were both 30m. The front-to-front distance contained a 9m carriageway, shown by Figure 5, which seemed excessive considering the small amount of traffic. The roads served only to give access to the houses and at least two cars could be parked within each curtilage. The houses were set back at least 9m from the edge of the carriageway. Half of this distance was semi-public front garden and half was nature strip. The houses were generally 12m wide and 15-20m deep, giving footprints from 180-240m². The plots were generally 15m wide and 40m deep. The distance from the back of the house to the rear plot boundary was 10-20m, giving a significant back garden area of 150-300m². The house footprints occupied, in general, approximately one third of the plot area.
Figure 3: Camp Hill, Brisbane, aerial view

Figure 4: Camp Hill, Brisbane, street scene

Figure 5: Camp Hill, Brisbane, profile of the road width
Figure 6 shows an aerial view of part of the Melbourne suburb of Kew East, just over 9 km from the city centre and with a net residential density of 11.6 dph. The street scene is shown by Figure 7. The houses had footprints of 11x15 m, 15x15 m, 10x24 m and 10x18 m with the same area range as Camp Hill. The plots were larger and more variable in shape at 15x42 m, 15x55 m and 20x42 m with an area range of 630-840m². Front-to-front and back-to-back distances had a range of 22-36m and 29-37m respectively. The back to rear boundary distances ranged from 15-28m facilitating substantial back gardens with many large trees. Front gardens were also of significant size with trees but incorporated the same carriageway width as at Camp Hill. The house footprints occupied, in general, approximately 30% of the plot area.

Figure 6: Kew East, Melbourne, aerial view

Figure 7: Kew East, Melbourne, street scene

Figure 8 shows an aerial view of part of Herbersham, near Mount Druitt, some 38 km west of the centre of Sydney. The street scene is shown by Figure 9. The density was slightly higher at 13 dph and its house footprints slightly smaller at 11.5x11.5 m. Back-to-back distances were less, some 23m but others only 16m. Back to rear boundary distances ranged from 8-15m, depending
on plot size. About 20% of the dwellings had very small back gardens, the remainder ones with variable size or a square shape. There were comparatively fewer trees than in the previous two examples but more swimming pools. What stood out, though, was the front-to-front distance of 34m, which was large in comparison to the distances at the rear. One carriageway was 6.7m wide and the other was 8.8m but both had a 2m footway on each side, even though they existed solely to serve the houses and were not on a through route. The house footprints occupied, in general, less than 30% of the plot area.

Figure 8: Herbersham, Mount Druitt, Sydney, aerial view

Figure 9: Herbersham, Mount Druitt, Sydney, street scene
Figure 10 shows an aerial view of part of the Perth suburb of Spearwood, just over 17 km south of the city centre. The street scene is shown by Figure 11. At 9.3 dph, the density was slightly lower than the other examples. The front-to-front distance was high at 33m and so was the back-to-back distance: 27m being common within a range of 20-30m. However, the back to rear boundary distances varied widely. Some were a fairly substantial 14-18m while others could be as little 7m. Fortunately, the shorter distances did not coincide back-to-back, which accounts for the reasonable back-to-back distances. Many of the houses were large at 14-m wide and 17-20m deep. Although plot sizes were larger than in the other examples, 18m wide and 42-45m deep, the large houses used up the back garden space. The house footprints occupied, in general, approximately one third of the plot area.
Detailed analysis - The newer suburb

Queensland

Part of the Gold Coast suburb of Labrador is shown by Figure 12. This had the lowest net density, 10.5 dph, of all the newer Australian developments studied which was lower also than all but one of the older suburbs studied. Nevertheless, the back-to-back distances were only 3-4m, leaving only 1.5-2.0m at the back of the house. Some side-to-side distances were less than a metre. The plot widths were either 25m or 30m with depths of 32m for the 25m width or 24m for the 30m. At 720-825m², the plot areas were larger than most of the plots in the older suburbs studied. Dwelling footprints were either 25m or 20m wide. Front-to-front distances were the most substantial of the newer developments studied, being 27-30m and accommodating a carriageway width of 4m. The coverage of the plot by the dwelling footprint approached 60%.

Figure 12: Labrador, Gold Coast, aerial view

Figure 13 shows an aerial view of Charlotte and Prudence Streets in Carina a suburb of Brisbane lying 8.5 km south east of the city centre. A perspective view is shown by Figure 14. It was the extreme nature of the design of this development that triggered this investigation. It contained 82 dwellings, single and 1½ storeys, at a density of 20 dph. It had the appearance of being built all at one time. There was a very limited range of house types, apparently by one builder. There was a body corporate that maintained a small communal swimming pool for the residents. What was striking about the design was that the private amenity space to rear and sides of the dwellings was near to non-existent. There was a space of about 1m side-to-side and 4-5m back-to-back. The dwellings were all deep plan in form, 10m wide and 20m deep. Although the carriageway was 5m wide with traffic calming features, much as might be found in Europe, it was set within a front-to-front distance of 21m. The front aspect was open-plan, laid to grass and hard standings.
There were some small trees, which made little impact on the street scene. The forward position of the double garages, combined with the use of small, tinted windows, created a blank townscape with a lack of transparency and surveillance. The coverage of each plot by the dwelling footprint was just over 60%.

Figure 13: Carina, Brisbane, aerial view

Figure 14: Carina, Brisbane, street scene

Figure 15 shows an aerial view of new developments within the Brisbane suburb of Hendra. The lower part of the picture shows a gated estate of two-storey houses. A street view is shown by Figure 16. Because they were two-storey, the dwelling footprint was the smallest and the net density, 30 dph, the highest of all the Australian examples studied. Some of the dwellings were semi-detached. Although they gained more light and air than the other examples studied, they did not enjoy back gardens, the distance at the back of the house ranging from 3m to less than one. At 13-14m the front-to-front distance was the lowest of the Australian examples studied. The coverage of the plot by the dwelling footprint was 54%.
The line of houses at the top of Figure 15 formed the first stage of a larger development. The houses were all single storey as shown by Figure 17. The density was 21 dph which made an interesting contrast with gated estate immediately to the south. The houses generally had only 2-3m at the back, some even less, and 1-2 m side-to-side. The plots were 11-15m wide and 32m deep. The house footprints were all deep-plan, 11-12m wide and 23m deep. The coverage of each plot by the dwelling footprint was, in general, 60-70%.
It could be objected that the developments at Carina and Hendra were exceptional and that even the Gold Coast might be untypical. Examples of other new suburbs, away from the city centre and coast were, therefore, studied, including at least one that might be regarded as of a higher standard than the others. They might not be as extreme as the Carina and Hendra examples but would they show the same general characteristics and trends? One characteristic that did appear in following two examples was that, at 30%, they had the highest proportion of rented dwellings.

Forest Lake lies 18 km southwest of the centre of Brisbane, it was intended to be a quality layout and was characterised by a higher standard of landscaping than was usual at the time. An aerial view of the portion studied is shown by Figure 18. A view of typical houses is shown by Figure 19. It was characteristic of new development in this region that, although a long way from the city centre, it was at a higher density than older suburbs. The houses were predominantly single storey. Some houses were to the developers’ own design but most had been purchased by plot owners from the standard designs of a small number of local builders. This process resulted in marginal variations in the pattern of urban form and, for this reason the example shown by Figure 18 was analysed in two sections. Section 1 had a density of 13.3 dph. It contained large plots of 21x32 m and smaller ones 10-12m wide and 26m deep. The front-to-front distance was 26m, side-to-side distances were 3-4m. The coverage of the plot by the dwelling footprint was in the range of 58-69%. Section 2 had a density of 21 dph and contained plots 10-12m wide and 30m deep. The front-to-front distance was 24m but the side-to-side separation only 1.5m. The coverage of the plot by the dwelling footprint was 52%. Both sections contained a wide range of house dimensions with footprint areas ranging from 180-390m². Back-to-back distances were 8-11m resulting in rear amenity spaces of 3-7m deep. Forest Lake was distinguished from the other examples studied in that most, but not all, of the dwellings had a space with some trees at the rear. However, these spaces were not comparable in scale to the size of the house, nor the back gardens in the older suburbs.
Springfield Lakes is a very large development on land lying over 23km southwest of the centre of Brisbane. It was built shortly after Forest Lake by the same developer. Figure 20 shows an aerial view of part of Springfield Lakes. Views of typical houses are shown by Figures 21 and 22. Because plot and dwelling size were variable, this example was analysed in three sections. Section 1 was at a net residential density of 16 dph. The front-to-front distance was a uniform 20m, while the back-to-back distances were either 6-8m or 11-16m. The plots varied in width from 9-12m but were a standard 32m deep. The house dimensions varied from 9-12m wide and 17-24m deep. Some properties had a distance of 6-9m at the rear of the house, resulting in a fairly useful back garden, but many had only 2-3m. The coverage of the plot by the dwelling footprint ranged from 45-65%. Section 2 had a lower net density of 14 dph with greater front-to-front and back-to-back distances, 22-23m and 10-15m respectively. Consequently some of the houses had reasonable back gardens, 9-10m deep, but others had as little as 3-5m. The coverage of the plot by the dwelling footprint ranged from 45-60%. Section 3 was at the higher density of 17.7 dph. Front-to-front distances were still high at 22-24m but back-to-back distances were low at 3-12m. Plots were either 24m or 32m deep with a width of 9m, 15m or 19m. There was a wide range footprint areas from 126-345m². The coverage of the plot by the dwelling footprint ranged from 55-65%. Although a few houses had a rear amenity space 8m deep, most had very little space at the back. Note the view of the arrangements at the side and rear of a dwelling that was revealed by Figure 22.
Figure 20: Springfield Lakes, Brisbane, aerial view

Figure 21: Springfield Lakes, Brisbane, street scene

Figure 22: Springfield Lakes, Brisbane, exposed side and back of a dwelling
Victoria

Figure 23 shows an aerial view of part of Meadow Heights, nearly 18 km north of the centre of Melbourne. The dwellings were arranged in long cul-de-sacs at a density of 18.5 dph. There were few trees and little other planting. Front-to-front distances varied between 21 and 25.5m and contained a 6m carriageway. Plots were either 11x30 m or 15x33 m. House footprints exhibited a wide range of dimensions, with areas from 96-270m², but were generally deep plan. The side-to-side separation was only 1-2m. Back-to-back distances varied according to the combination of house and plot. The minimum was around 6m, many were approximately 9m and a few were as much as 20m. 28% of the properties had at least 8m from the back of the house to the rear boundary allowing a significant size of rear garden. However, this meant that 72% did not and, when the residents had chosen a 27.3x8.3 m house type, they ended up with only 2m at the back and had, in effect, no useful space around the house at all. On the other hand, those who had chosen 12x16 m house type got ample space and, if their neighbours at the back did the same, a 20m separation back-to-back. Although one small house occupied only 35% of its plot, in general the coverage of the plot by the dwelling footprint ranged from 55-65%. This neighbourhood had the lowest proportion of one and two-person households resident on census night of any the new developments for which data was available. This suggests that there would be larger families present who would find the lack of private open space a problem.

New South Wales

Figure 24 shows an aerial view of a development in the Rooty Hill part of Mount Druitt, nearly 38 km from the centre of Sydney. It is 3 km south east of the older Herbersham area described
above. What was immediately striking was that not only were the houses square deep-plan with very little space around them, but that some of the houses were almost completely surrounded by others, an arrangement often referred to as a “battleaxe” layout. A typical street scene is shown by Figure 25 and the limited space at the front of one of the “battleaxe” layout properties by Figure 26. The net density was 19 dph. The front-to-front distance was 25m containing a carriageway of 7m or 4.7m in width, the latter figure being the same as in British practice as discussed below. Plot dimensions were 15x25m, 16x18m, 14x17m or 10x17m, with some 2x(12x17m) duplexes. In some cases there was a back-to-back distance of 10m which permitted a back-to-rear boundary distance of 5-6m, but, in many cases, the rear separation was as little as 3.5m resulting in the space at the back of the house being less than 2m. The coverage of the plot by the dwelling footprint ranged from 40-70%.
Even nearer to the Herbersham area of Meacher Street in Mount Druitt was the example off Meacher Street. Here the 31 houses were arranged in two parallel culs-de-sac at a density of 18 dph. The street scene is shown by Figure 27. An aerial view is shown by Figure 28. Front-to-front distances were 22-23m. Plots were 14-19m wide 22-24m deep. Some houses were comparatively modest in scale and, unusually, shallow plan in form which permitted a space at the back of 3.0-6.5m providing a minimally sized outdoor space at the rear. However, 18 of the dwellings were large deep-plan houses, 10-11m wide, 17-20m deep with near zero space at the rear and back-to-back distances of only 1.5m. The coverage of the plot by the dwelling footprint was 47%.
Figure 28: Meacher Street, Mount Druitt, Sydney, aerial view

Western Australia

Figure 29 shows a street scene of a recent extension of the Perth suburb of Spearwood, on the opposite of the main Rockingham Road to the older example described above. An aerial view is shown by Figure 30. What was remarkable here was, as with the Gold Coast example, the low density and large plot sizes. At 13.6 dph the density was nearer to the older suburbs than to most of the other recent examples described but it did not result in the same amount of green space. The front-to-front distance was 24m. Within the cul-de-sac, the carriageway was 5.4m wide while, on the through links, it was 7m plus a 1.7m footway. At around 600-700 \(^2\), the plots were larger than for the other recent examples, being 18-21m wide and 33m deep, and so were the house footprints which were 19x18-23.5 m, 17x20-23 m or 15x22 m. Consequently, with the exception of one case of 8m, the back-to-back distances were generally only 3-5m with some being near zero. Some of the houses were almost entirely surrounded by others. The coverage of the plot by the dwelling footprint ranged from 56-65%. This area had the highest proportion, 48%, of one and two-person resident on census night of any the new developments for which data was available. This is consistent with the familiar hypothesis that very large dwellings do not result directly from a need to accommodate very large families.
Comparators from the USA

Three recent sites in the US were selected for comparison with the Australian examples. They did not show the same trends as in Australia and for this reason the data from them raises significant questions.

The first was from the outskirts of Columbus, Ohio. An aerial view is shown by Figure 31. The net residential density was 10.3 dph. The front-to-front distance was 29m and contained an 8m carriageway with two 2m wide footways, which would appear excessive for what were only residential access roads. Plots were a uniform 20x35 m. Houses appeared to be two-storey with footprints of 12x12 m, 12x15 m or 15x15 m. This allowed back-to-back distances of 24-30m and ample back gardens of 280m².
The second example was from Rocklin, CA on the outskirts of Sacramento, where a somewhat older suburb had been recently extended, as shown by the aerial view in Figure 32. The density here was only 7.4 dph. The front-to-front distance was 27m and contained a carriageway with the astonishing width of 9.3m plus two 2m wide footways. Plots were very large with widths of either 25m or 30m and a depth of 40-45m, sometimes more. The dwelling footprints were 20m by 15-19m. This gives the same back-to-back distances and garden sizes as in the previous example.

Figure 31: Columbus OH, USA, aerial view

Figure 32: Rocklin, Sacramento CA, USA, aerial view

The third example was part of Sun City AZ, on the outskirts of Phoenix, and an aerial view is shown in Figure 33. Sun City had the dubious honour of being used to illustrate the edge-city in
Towards an Urban Renaissance (Urban Task Force, 2000) and is easily recognised by its circular road layout. It was more similar to Rocklin than to Columbus. Plots were 23-25m wide and had a uniform depth of 37m. Where dwelling footprints were large, 19-20m wide and 12-16m deep, they were arranged lengthwise (16m deep cannot really be described as shallow plan). This gave back-to-back distances of 26-32m and back-to-rear boundary distances of 14-15m resulting in substantial back gardens.

![Sun City, Phoenix AZ, USA, aerial view](image)

Figure 33: Sun City, Phoenix AZ, USA, aerial view

For all three examples, the house footprints occupied, in general, approximately 30% of the plot area.

Overview

The international overview and visual inspection suggested that the phenomenon was very much an Australian one. This is illustrated starkly by the plot coverage statistics in Table 1. The new American suburbs, new and older developments in the UK and the older suburbs in Australia all show one-third coverage or less, despite widely differing circumstances.

Comparing the old and new Australian examples we can note immediately an increase in net residential density from 9-13 dph to 13-20 dph. It is worth noting by way of comparison that both these density ranges would be regarded as very low in Europe. There has been a reduction in the front-to-front distances and carriageway widths but only to dimensions that would, until recently, have been regarded as fairly average in Europe. The picture for plot size and dwelling footprint was complex, because of the ranges of shapes and sizes, but it does appear that in the examples described that the plot size in Australia has been getting smaller and the dwelling footprint larger. What should also be noted was that although this same trend was also present in the dwellings in the Gold Coast and Perth examples, the plot areas there were generally larger and the densities lower. Although plot sizes in the recent schemes were comparable with, or larger than, the plot areas in older suburbs in Sydney and Brisbane, they had been almost completely covered by larger dwellings. In the American examples, the house footprints were marginally larger but the plot areas were significantly larger. This permitted a rear private amenity space equivalent in area to the older Australian suburbs.
Regrettably, the number of studies of the use of private amenity space is very few, whatever country is chosen. For Australia, the principal study, The Quarter-acre Lot (Halkett, 1976) is now some decades old. It does, however, confirm the importance and usefulness of back garden to its owners. A study by Gutteridge, Haskin & Davey (1989) found general satisfaction with lot sizes but a desire for more outdoor space by those with smaller lots of 350-450m². An unpublished undergraduate study by Brindley (1999) also confirmed the utility and significance of the back yard for residents. A recent general history (Sims, 2006) has reiterated its importance in the Australian tradition. Researchers in landscape studies have noted that trends to smaller lots have not reduced interest in back gardens nor have they been the cause of increased visits to wetlands in Perth (Syme, Fenton & Cokes, 2001).

The most significant study for the purposes of this paper has been that by Mead (2000) which was, unfortunately, unpublished at the time of writing. In 2000 he surveyed one residential areas in each of three suburbs 21-26 km southeast of Sydney. Two were older suburbs with spacious gardens but one, Menai, was constructed in 1992-3 with much smaller plots. It has 21 dph and plot areas ranged from 252m² to 527m². Plot coverage was 55% and back gardens ranged from 46m² to 95m². It would be appropriate here to quote Mead’s own conclusions:

this analysis highlighted the transformation of the yard from a predominantly working/domestic yard, as was observed by Halkett in 1976, to a more design conscious and recreation oriented space. The backyard was however confirmed as the dominant outdoor recreation venue for the suburbanite. The elements within this transformed yard, particularly elements of children’s and adult recreation, are strongly associated with the number and frequency of activities being carried out in the yard. Nevertheless, outdoor domestic and working yard elements still contribute to the number and frequency of activities.

Demographic characteristics such as number of children and total number of persons in a household (but excluding age), as well as a resident’s perception of the yard also contribute to the amount of use. Preferences of yard type are predominantly for large and medium sized yards and despite this being related to demographic characteristics of a household (again not age of the respondent), it is also strongly related to a resident’s current use level of the yard. (Mead, 2000)

What is interesting from the available literature is not just what is said but what did not come out. There were no responses from residents saying that that they disliked back yards and wished to be relieved of the burden of maintaining them. Quite the opposite appears to have been true. No sources that Mead discusses, either in Australia or other countries, give this impression. Moreover, the most recent history of Australian domestic gardens (Sim, 2006) continues to argue that they are part of an Australian tradition. If there has been a dramatic change of public mood against back gardens in line with the physical changes in Australian suburban form, then no academic observer has managed to detect it.

Why should this disappearance be a problem?

The advantages of private amenity space

It may be useful to start the discussion of the problem by setting out the functions of private gardens and yards in residential layouts. They fall into two categories: those affecting the wider community and those limited to the quality of life of individual households.

The wider benefits arise from the presence of trees, other planting and soft surfaces. The trees not only provide shade from the sun but also modify the microclimate and absorb pollutants. The soft surfaces absorb rainwater and reduce run off into drains. They form the first stage in a
system of sustainable drainage. Private gardens exhibit a high degree of biodiversity, when aggregated over a residential area this diversity can be very significant and in excess of that found, for example, on land devoted to sports fields or intensive agriculture. It is not necessary for the whole of each garden to be soft landscape for this benefit to accrue as long as there is an interplay of hard and soft landscaping within each plot.

For the quality of life of the residents, one of the most important roles of the space around the house is to provide outlook, natural light and natural ventilation. These amenities are enjoyed even if the occupants never venture outside.

A garden or yard to the rear of the property offers the advantages of security and privacy not found in public space and can be characterised as an outdoor room. It can provide a space for small children to play in secure surroundings and where adults from inside adjoining rooms can supervise them. It also provides a place for adults to sit out and to dine outdoors, an activity that might be considered very appropriate in the Australian climate. It provides space for barbecue facilities and in-ground swimming pools both of which have often been characterised in the past an important features of the Australian way of life. For the pursuit of a sustainable lifestyle, back gardens and yards provide space for:

- drying laundry without the use of electricity;
- water collection and storage;
- waste disposal (composting, sewerage disposal, etc.),
- home food production (as a supplement, not a replacement, to foodstuffs purchased outside the home).

The role of plan-form

Although it may not be immediately obvious, the issue of private garden provision is linked to that of the shape of the plan-form of the dwelling. Alternative plan shapes are shown by Figure 34. A square plan, as shown by (a), needs a large plot to provide a good-sized garden and will be a satisfactory arrangement only for very low-density layouts of detached houses. The deep plan arrangement, shown by (b), is popular with developers as they can fit more dwellings into a given length of road. It makes garden provision very difficult, as any reasonably sized area becomes long and narrow. Both the deep-plan and large square-plan forms have interior sections that are difficult to light and ventilate naturally (other than single storey flat roofed dwellings with skylights and interior courtyards). However, from a builder’s point of view, the fact that they minimise wall length and fenestration for a given area reduces costs. In contrast, the shallow plan and L-shaped plan forms facilitate useful square-shaped private rear spaces as shown by (c) and (d). They also provide natural light and ventilation, and maximise outlook, for all rooms. They provide space for detached garages and garden sheds. When applied over large areas, the shallow depth reduces block depth and thereby enables economic numbers of dwellings to be accommodated.

![Figure 34: Alternative plan shapes](image)
The issue of garage location

Integral garages create problems that are closely associated with these issues especially where they are designed for two cars side by side. They have no windows and, consequently, the natural light and ventilation for the interior of the dwelling is substantially reduced. Such provision normally permits only one room, and therefore limited window area, to have outlook to the street, as can be seen from the street scenes in Figures 14, 17, 21, 25, 28 and 30. This reduces the aesthetics and security of the public realm.

On the other hand the provision of space around the dwelling allows cars to be accommodated in detached garages, ideally to the rear, or in carports, avoiding the need for an integral garage. This frees more wall space for windows, which is important at the front of the dwelling as it offers maximum surveillance of the street, adding to the security and aesthetics for passers by. It also benefits the quality of life of the residents as the windows offer the opportunity for natural light and ventilation.

The integral garage is also linked to the issue of large setbacks in front of houses. Such garages are normally at the front of houses and local regulations require space for manoeuvring and parking of at least one car length in front of the garage door. On the other hand a detached garage, which can be linked to the house, or car-port can be set back at the side of the house enabling the house to be set nearer to the road.

The issue of plot coverage

Table 1 shows the increase in Australian plot coverage by dwellings from 30% to 50-70%. At first glance, this may not seem too problematic. Half of a 600m² plot would be 300m² and 30% would be 180m². However, this neglects two factors, the first being the effect of the small space left to the sides of the dwelling. Figure 35 shows a house footprint with a 2m gap all around it. (This ought to be seen as a hypothetical exercise but it does correspond to some of the cases observed within the Rooty Hill example.) For a 300m² plot area, say 10x30m, this gives a plot coverage of 52%. For a 600m² plot area, say 15x40m, the coverage is 66%. To limit, therefore, a dwelling to half the area of a plot will not ensure, in itself, any useful private amenity space.

For a 300m² plot area, 10x30m, plot coverage is 52%.
For a 600m² plot area, 15x40m, plot coverage is 66%.

Secondly this problem is compounded when the space at the front of the dwelling is taken into account. A front set-back of the dwelling from the front boundary of the plot, facing the road is required in most of Australia. Once this is removed from the 30-50%, then very little remains elsewhere. As Table 1 shows, a useful area at the back is associated with a plot coverage of around 30%.

Space for trees

Trees need space to grow both for the canopy and, most importantly, the roots. Structural damage to buildings by roots needs to be avoided. The reduction of space around the dwellings
described in this paper has the effect of substantially reducing the degree of tree coverage in perpetuity, as there will be no room for them to the sides and backs of the houses.

Within some of the recent developments studied small areas of bush land had been retained and some had newly planted street trees. The street trees were small when surveyed for obvious reasons. Where they grow to a significant height, they will provide useful shade and enclosure of space, constituting a contribution towards the aesthetics and microclimate, where they remain small, this will not occur. However, even where the street trees grow to a significant size, this will not create the degree of tree coverage found in the older suburbs and which can be seen from the aerial photographs. For the beneficial effects on aesthetics, microclimate and control of run-off to be achieved overall, a reasonably uniform distribution is required. Where street trees remain small, or are absent entirely, then the general problem of lack of tree coverage will be aggravated.

Natural ventilation

The point has already been made that the dwellings in the newer suburbs are generally of deep plan layout, have small windows and rarely have balconies and verandas. Their design relies on air conditioning for them to be habitable. However even if they had been designed for natural ventilation the reduction in width between the dwellings would make such ventilation very difficult, especially in those parts of Australia with subtropical climates. A study (Su San Lee, 1998) of suburban development in the Douglas area of Townsville revealed that the narrowness of the gaps between the houses prevented airflow around them creating a “heat island effect”. Exhausts from the air conditioners exacerbated this and dark coloured roofs which absorbed, rather than reflected the heat. The use of impervious sheet metal fencing, rather than, open link fencing, was also a factor in reducing airflow. These findings were confirmed by numerous complaints from the residents (Clark, 2006).

Summary of disadvantages

With the disappearance, or minimisation, of the private space to the rear of dwellings, all the functions and advantages associated with it also disappear. In summary, the following disadvantages are suffered by the wider community:

- reduced aesthetics;
- reduced surveillance of the public realm;
- little or no biodiversity;
- poor microclimate, including loss of shade, in hot weather;
- increased run-off in wet weather.

The residents themselves also lack the space for the following:

- sitting out in private;
- secure outdoor children’s play;
- provision for swimming, barbeques;
- drying laundry and other components of a sustainable lifestyle;

and suffer from:

- lack of pleasant outlook from windows;
- dark interiors;
- lack of natural ventilation;
- increased electricity consumption.

The design implies an entirely indoor lifestyle, insulated from the prevailing climate and with little opportunity for exercise.
The issue of density – some British examples

A view that has been put to the author is that the minimisation or even elimination of back yards and gardens is a necessary consequence of moves to higher residential densities resulting from policies of urban containment and consolidation. Not only does that data in Table 1 show no direct correlation, but the European experience is that that at least below 70 dph there need be no direct connection between lack of provision of private amenity space and higher densities.

In northwest Europe the type of contemporary low-density suburban development found in North America and Australia does not occur, although large-scale house building does. New suburban housing schemes without private open space cannot be found because they are not allowed. Nevertheless, some comparisons with details of European suburban form can be instructive in order to see what an alternative ways of extending urban areas look like. The point that is of interest to the argument here is that significant back gardens can be provided at net densities two to three times those found in the Australian suburb.

Two examples from Britain were studied examples were not taken from other European countries because the context of local culture, planning policy and interventionist planning practice were even further removed from the situation in Australia than was the British one. The data are shown in Table 3. The first British example was Letchworth Garden City in Hertfordshire, the first “garden city”. Both its plan, and its neo-vernacular architecture by Parker and Unwin, became an archetype not only for British public housing but also for “garden city” schemes in many disparate parts of the world. It was also interesting because the actual density was much higher than visitors usually imagine when they first see its landscape-dominated townscape.

Table 3: Data from the British examples

<table>
<thead>
<tr>
<th></th>
<th>Net density</th>
<th>Typical distances</th>
<th>Area ranges</th>
<th>Plot coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dph</td>
<td>front to front</td>
<td>back to back</td>
<td>back to rear of plot</td>
</tr>
<tr>
<td>Letchworth Garden City</td>
<td>22</td>
<td>20-35</td>
<td>40-70</td>
<td>15-20</td>
</tr>
<tr>
<td>Chelmsford – Bishop’s Mead</td>
<td>34</td>
<td>10</td>
<td>30</td>
<td>12-20</td>
</tr>
</tbody>
</table>

Figure 36 shows a map of the Pixmore Hill estate within Letchworth Garden City, Hertfordshire. This neighbourhood was designed by Parker and Unwin and built 1906-1911 and was one of the most representative residential areas of this town. Letchworth was the world’s first planned “garden city” and its landscape-dominated form and neo-vernacular architecture, illustrated by Figure 37, became a model that was influential and widely copied. The gross density of area shown was 20 dph. The net residential density was mostly 22 dph rising in the southeast quarter of the area shown, to 35 dph. The front-to-front distances of 20-35m were not too dissimilar from those in Australia but were devoted predominantly to front gardens and roadside verges with street trees, rather than to road space. The back-to-back distances ranged from 40-70m, greatly in excess of even the older Australian suburbs. Plots had dimensions of 8x25 m, 9x28 m, 11x38 m, and 8x60 m, long and narrow but with a very significant total area. The really dramatic difference from Australia was the size of the dwelling footprint: 7x8 m. Even allowing for the fact that the dwellings were all two-storey, this was still very small in comparison. In consequence, the house footprints occupied less than 30% of the plot area, and often this figure was as low as 12%.
The second British example was chosen to represent current best practice. The scheme used was that known as Bishops Mead, by Reeves Bailey Architects, within the Chancellor Park development at Chelmsford, Essex. The scheme was constructed in 1999 and won a UK Housing Design Award in 2002. It was a faithful implementation of the principles of the revised Essex Design Guide (EPOA, 1997) and the policy direction now favoured by the British government and its advisory institutions, such as the Commission for Architecture and the Built Environment.

Figure 38 shows the layout of the Bishop’s Mead scheme. Back-to-back distances were a minimum of 30m providing back gardens of 150m², equal only to that found in the lowest density Australian suburbs. The net density here was 33 dph and this had been achieved by reducing the front-to-front distance to 10m. House footprints were 7x7 m, 12x8 m, 11x6 m, all shallow plan and two to three storeys in height, as can be seen in the street scene shown by
Figure 39. The dimensions of the plots were 10x21 m, 10x27 m, or 13x18 m, comparable in area to the newer Australian suburbs. The house footprints occupied, in general, approximately one third of the plot area.

Figure 38: Bishop's Mead, Chelmsford, UK, layout

For further comparisons with the British situation, Table 4 shows the results of a survey of the characteristic of different types of urban form carried out by the author in Chelmsford in the mid-1980s (Hall, 1986). What was notable was that not only did the standard 20th century mass housing types have substantial rear gardens but they were also at densities of 25-30 dph. A review of public and planning authority attitudes to the provision of back gardens in Britain was also undertaken by the author at this time Hall (1987). This supported the view that residents saw such provision as positive and useful.

Figure 39: Bishop’s Mead, Chelmsford, UK, street scene
Table 4: Density and garden area for exemplar UK housing estates by type

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Net density dph</th>
<th>Rear garden mean area - m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late 19C bye-law (Marconi Road)</td>
<td>54</td>
<td>73</td>
</tr>
<tr>
<td>1930s semi-detached (The Avenues)</td>
<td>27</td>
<td>151</td>
</tr>
<tr>
<td>1930s-1950s public (Springfield Park)</td>
<td>29</td>
<td>140</td>
</tr>
<tr>
<td>1970s private (Humber Road)</td>
<td>30</td>
<td>166</td>
</tr>
</tbody>
</table>

Data from survey in Chelmsford Essex, UK (Hall, 1987)

What was notable about the British examples was that, at a density far higher than in the newer Australian suburbs, back-to-back distances and rear garden sizes were greater than in both the American and the older Australian suburbs. What was really striking, however, was the small size of the dwelling footprint. This implied two-storey construction but, even then, the gross floor area would still be at the lower end of ranges in the Australian and American examples. Detached bungalows are a popular and sought after house type in the UK but they form only a minority of total dwellings. For the past 20 years, at least, they have not featured in volume house building. Urban design thinking and government policy have raised the density for new construction in England to a minimum of 30 dph. As illustrated by the Chelmsford example, this has been achieved by reducing the front-to-front distances so that a house and garden form is maintained even when the street space is definitely urban in character.

Another point is that British planning control requires back-to-back distances of 25-30m, 20m at the absolute minimum. This is to prevent overlooking rather than for back garden provision but ensures space is available at the rear of the dwelling. Planning authorities often make use of minimum back garden standards but they do not carry the same weight as the overlooking criteria. One result of this is that, in both British and North American suburbs, rear boundaries are usually demarcated by light fences, often transparent open-work, rather than the metal walls that are now used in the new Australian suburb.

Some examples from Adelaide

It was remarked earlier that the overall visual inspection of aerial photographs did not reveal evidence of the problem occurring in Adelaide, where most of the urban area has the characteristic of the older suburbs described in this paper. However, in some parts of city there appeared to be newer layouts that, while superficially similar to the schemes described from elsewhere, still maintained a useful amount of private space. To investigate this point in more detail, some examples from Adelaide were analysed in the same way as those from the other Australian cities.

Outer-suburban Adelaide

Two recent developments on the northwest extremities of Adelaide were selected for detailed study. General examination of the aerial photographs of the city as a whole showed a preponderance of the older style of suburban form especially where the suburbs encroached on the surrounding hills. However, towards the northwest, development had, in recent years, spread linearly on fairly flat land along a major highway and railway line. The area known as Elizabeth, 30 km from the city centre, showed similar street patterns to the recent suburbs in the other Australian cities studied. Although this area was not so typical of Adelaide as a whole, by taking examples nearer in equivalence to those studied elsewhere it was hoped to isolate what might be different in South Australia. Two examples on the outer edge of the Elizabeth area were chosen. The net density for both examples was approximately 16 dph.
The first example was a site in Smithfield Plains, for which an aerial view is shown by Figure 40. When comparing it with the other examples studied, what was noticeable was the preponderance of L-shaped house plans. This house type uses two wings to enclose a small garden area. Each wing is shallow in plan providing the possibility of natural light and ventilation. When used as a convex shape, pointing at the street, it is the back rather than the front, garden which is enclosed. The houses here had sides of 14-17m and depths of 7-7.5m resulting in area of at least 50m² being enclosed by the two wings. When combined with a distance from the back to the rear boundary of 5-7m, another 70-90m² were added creating a total rear amenity area of 120-140m². The front-to-front distance was 20m but a back-to-back distance was not really applicable because of the irregular form of this particular layout. Side-to-side distances were very small. Plot sizes ranged from 360-510m² and were commonly 430m². Dwelling footprints ranged from 150-200m² with the L-shaped houses being around 175m² in area. Plot coverages ranged from 34-48%.

The second example was nearby in an area called Blakeview. An aerial view is shown by Figure 41. It can be seen that while L-shaped plans were still common they were not universal. Here the front-to-front distance was 25m and the back-to-back distances 10-20m. Side-to-side distances were very small. Generally, the distances from the back to the rear boundary were 5-9m, although there were some significant exceptions with less than 3m. Plot sizes ranged from 270-500m² and were commonly around 470m². Dwelling footprints ranged from 150-225m². The L-shaped houses were approximately 175m² in area, as at Smithfield Plains. Plot coverages ranged from 40-48%, although with important exceptions. These exceptions were case every bit as bad as the worst cases seen in the other Australian cities studied with plot coverages of 71%. To the south of this development such case appeared very rare.
Port Adelaide

Part of an urban infill scheme in Port Adelaide, built in 1999 and 13 km from the City centre, was also studied. It was chosen because the author had the opportunity to stay in one of the houses as a participant observer and because it raised some interesting issues.

At first glance the aerial view shown by Figure 42 appears to show the same urban form as in the recent examples from other Australian cities: deep plan houses with integral garages arranged close together at the back and the sides but not at the front. In this case the houses were very close together side-to-side. There was a separation of 2m divided by a fence into two 1m strips, except at the side of each garage which were on the plot boundary leaving a 1m for the neighbouring house only. When, however, a close comparison was made with the other examples the differences were very significant. Although the front-to-front distances, 19-22m, back-to-back distances, 14-16m, and back to rear boundary distances, 7-8.5m, were less than those for the older suburbs, compared to the other newer suburbs the front-to-front distances were smaller and the distances at the rear larger. In particular, back to rear boundary distances provided a back garden area of 70-100m². Its positive contribution to residential amenity can be seen from Figure 43 which shows the view from the living room into the back garden from one of the houses.
These back gardens, although not significant in size compared to those in Britain or America, were remarkable when compared to the situation in the new Australian suburb. Back gardens of this size were found with the less extreme examples Springfield Lakes, Forest Lake and Meadow Heights but in these case they represented only a proportion of the provision with many back yards being small and some negligible in size. In the case of Port Adelaide all the houses had back garden of this size.
Remarkably, this garden size was being achieved with plot sizes of 320-384 m², plot coverages of 56-60\% and a net density of 25 dph. (The density ranging over the whole development of 116 dwellings was 18 dph.) The street scene shown by Figure 44 shows the visual advantages of smaller front-to-front distances combined with a nature strip cum footway of 3m and a carriageway width of 4.2m. A nature strip of this width could still support an avenue of trees which will provide significant visual enclosure and shade when full grown. Note that all the garages were singles which reduced their adverse impact on the street scene.

![Figure 44: Port Adelaide, street scene](image)

<table>
<thead>
<tr>
<th>Net density</th>
<th>Typical distances</th>
<th>Area ranges</th>
<th>Plot coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>dph</td>
<td>front to front</td>
<td>back to back</td>
<td>back to rear of plot</td>
</tr>
<tr>
<td>Smithfield Plains</td>
<td>16</td>
<td>20</td>
<td>5-7</td>
</tr>
<tr>
<td>Blakeview</td>
<td>16</td>
<td>25</td>
<td>10-20</td>
</tr>
<tr>
<td>Port Adelaide</td>
<td>25</td>
<td>19-22</td>
<td>14-16</td>
</tr>
</tbody>
</table>

* with some exceptions of up to 71% |

Summary

The lessons that can be drawn from the Adelaide examples is that adequate, but not generous, back garden sizes can be achieved with only a marginal deviation from the new suburban form now current in other Australian cities. It is not suggested that their design was ideal, or represented best practice, but that some solution should be within easy reach.

Why is it happening?

Why then is this phenomenon happening? More particularly, is it a response to changing patterns of consumer demand? This is a very important question but providing an answer is far from easy. To try to explore the answers to this question the research method was augmented by interviews with professionals involved with the planning and development process. The names of those who took part are given in the acknowledgements. They were supplemented by numerous discussions with fellow academics at Griffith University, Queensland University of
Technology and the University of Queensland. These exploratory dialogues proved invaluable in attempting to make sense of the empirical data.

The statistics at the macro level (ABS, 2005) show a substantial rise in the floor area of new houses over the last 20 years. From a figure of 162.2m² in 1984-5, by 2003-4 the average floor area had risen to 227.6m², an increase of 40%. The increase in the ten-year period from 1993-4 to 2003-4 was just over 20%. The average site area also declined over the same ten-year period, from 802m² in 1993-4 to 735m² in 2003-4 (ABS, 2004). However, the evidence presented in this paper suggests that it was the increase in the dwelling area, rather than the decrease in the site area, that was driving the disappearance of back yards and gardens.

The issue of consumer choice
The first evidence that the disappearance of back yards may not have been a straightforward response to changing household preferences was the clear discontinuity in space and time. Normal markets take time to adjust and variations in preferences can take time to work through. However, what we see is that, after a certain point in time, the construction of one type of suburban form was almost totally replaced by another. In effect, the building of houses with significant gardens ceased within large-scale housing developments. The economic model that may be most appropriate is not the simplistic one of the perfect accommodation of supply and demand, but one where producers and consumers make what appears to themselves to be rational choices but which are, nevertheless, made within an extremely limited framework.

Location and property prices
The evidence from observers of the situation in the US is that in circumstances of extensive car-borne “sprawl”, prospective house buyers drive to a distance where property prices are at level they can afford (Levine, 2006). The further they drive from major centres, the lower the prices. This is pattern of behaviour facilitated by the low costs of private transport. With the presence of the same type of “sprawl” in Australia, it is plausible that the same purchaser behaviour would be found here too.

Comparison with the inner and central city
A piece of evidence that would suggest a continuing public interest from a significant sector of the public in views and outdoor amenities is the market in city-centre and inner-city residential property. This is just the location where it might be expected that they would be least important. High land values would be expected to militate against swimming pools and barbeque facilities. In the past, purchasers would have been expected to accept less, or more likely no, outdoor facilities because of the advantages of a central location. In reality the opposite is now happening. It is the older blocks that have no swimming pools and terraces for barbeques. The newer apartment complexes not only sport these features but have increasingly larger “entertaining balconies” and floor to ceiling windows that take maximum advantage of views. Advertisements for houses in inner suburbs stress the advantages of views.

The role of house builders
A particular characteristic of the contemporary Australian housing market (and one that can also be found in the US) is the separation of the purchase of the plot and the dwelling. This is not found in Europe where developers build the houses and sell house and plot together as one item. The hypothesis is that the sequence is as follows. Prospective purchasers drive to a locality where they can afford the price of a plot. Having selected their plot, they approach a builder who is offering standard house designs. Their perception is that it is to their financial advantage to maximise the resale value of their house and this means maximising its floor area. However, they wish to do this for the lowest initial outlay. They therefore seek the maximum floor area for the minimum price. This objective, pursued in the absence of other considerations, such as running
cost or quality of life, leads inexorably to this particular house types and urban layouts that we now see.

The building firms are, by and large, not technically sophisticated and do not offer imaginative designs. They respond to the situation in which they find themselves. Their response to consumer demand for the largest floor area for the lowest price, results in particular design features:

- single storey
- large integral garage
- deep square or rectangular plan form.

The deep square or rectangular plan form minimises the wall length and fenestration for a given area which, consequently, reduces costs. The integral garage is a very cheap structure which is counted as part of the floor area of the dwelling. Styling, ornament and landscaping is concentrated on the front of the house where it has greatest impact on prospective purchasers. This is the house type that predominated in nearly all the examples of new suburbs studied. (The exception was the gated estate at Hendra, the reason for its two-storey construction is discussed below.)

It is revealing to compare this with the situation in the UK. Although the degree of intervention by planning authorities in matters of design is substantially higher than in Australia (and increasing), it can be stronger in some places than others. Moreover, during the 1980s it was discouraged by central government policy. There are therefore plentiful examples in Britain of what happens when there is minimal design intervention. One result is the standard volume housebuilder product of which an example is shown by Figure 45. What they have in common with the Australian examples is that they are cheap structures with integral garages, space for cars in front of the garage and decoration on the front of the house only. Where they differ is that they are two storey and that the garage is for only one car, the building footprint will, therefore, be much smaller. From views that people express, it is likely that there would be a demand from house buyers in Britain for single-storey dwellings. However, they are not built by the volume housebuilders. As the housebuilders buy the land and build the houses, they fit as many on to the site as they can. Planning control requires back-to-back distances of 25-30m, 20m at the absolute minimum. If they built single-storey houses then the reduced number sold would cost them far more than any saving in construction costs. In these circumstances, therefore, single-storey dwellings would not be the most profitable. What this illustrates is how residential urban form is a product of commercial forces operating within a regulatory framework. If planning control does not require otherwise, a uniform product results.
The British experience may also explain the presence of two-storey houses in the Hendra example and the provision of some two-storey dwellings in the Carina one. In both cases, the development appears to have been constructed by one builder at one time to a fairly uniform design. The builder was able to maximise the financial return by using an extra storey to reduce the footprint and increase the number of dwellings. The extra income from the additional sales outweighed a marginal increase in construction costs.

Why are the houses an acceptable purchase?

Notwithstanding the point made above about the demand for views and outdoor facilities in recent city-centre developments, the fact remains that people do choose to live the type of suburban form criticised in this paper in spite of the disadvantages. There is, at the very least, an apparent lack of consumer resistance to the trends described. The same could be said about the other characteristics of the “edge city” living which have become almost a commonplace. They include excessive car use, disadvantages to non-car owners such as children, reduced exercise leading to health problems and reduced casual social contact. Residents of the edge city do not rate these problems as significantly as do environmental commentators and may even perceive them as advantages. It may be that they will change their views over time. It is certainly a possibility that residents may not find it as satisfactory as they first thought and as the new suburbs become down-market with age the residents may move on to something new.

One argument is that the occupants of the houses do not spend much time at home during the daytime. The lack of any outlook, probably the most serious disadvantage for day-to-day amenity, is not, therefore, experienced. However, far from this arising from the pursuit of an outdoor lifestyle, it results from long working hours and commuting times. The occupants leave for work early in the morning and return in the evening. Weekends, when not spent at work, are devoted to many hours of shopping. There is, regrettably, considerable evidence that, for a majority of Australians, this pattern of work is, indeed, the case. The Relationships Forum Australia (2007) has assembled a substantial amount of evidence from a range of official statistical sources that portrays a convincing picture. Their conclusion was:

> Working patterns have altered to such an extent that Australia is now the only high-income country in the world that combines:
> 1. average working hours that are at the top end amongst high-income nations
> 2. a strong tendency for work on weeknights and weekends, and
> 3. a relatively large proportion of the working population employed on a casual basis.

An equivalent message has been delivered by Australian Human Rights and Equal Opportunities Commission (2007). It would appear, therefore, that physical form described in this paper fits all to well into a wider picture of adverse changes in Australian lifestyles.

Why are the layouts allowed?

Why do the regulations and codes in Australia not prevent the problem? They are more detailed and explicit than in the UK and have similarities with regimes in the US and New Zealand. There will be, of course, variation in the scope and in the details of plans regulatory instruments across the many planning authorities in Australia. One reason for choosing examples from a number of cities was to hopefully take in a range of regulatory regimes. What was remarkable was the overall persistence of the phenomenon being studied, with the possible exception of Adelaide.

They generally specify minimum distances from the building to the plot boundaries and the setback at the front. This contrasts with the situation in the UK where, although there is not the same use of regulations and codes, standards are applied and distances are measured from building to building rather than to plot boundaries. This has the advantage of being able to
connect the standards to the urban design objectives which relate to spaces between buildings. The disadvantage of the Australian approach is that it cannot be linked to these objectives, or at least, not very easily. In reality, little connection is made.

Nevertheless, even allowing for these limitations, the regulations could ensure back garden provision by specifying rear set-backs in the same way that front set-backs are required. Most sets of regulations specify minimum distances from buildings to plot boundaries. The issue is how large they are on the rear boundary. Similarly, planning regulation may make reference to site coverage. However, what is written down in plans and regulations is only part of the story. There can be variations in the strictness and in the style of enforcement, there can be variations in interpretation. Positive advice and negotiation can also play a very significant role if need be. What appears to have been happening is that local councils have been taking a more relaxed attitude to plot coverage. This is the most plausible explanation of the move from 30-40% to 50-60%, or more, and of the way that this trend has become both uniform and seemingly irreversible.

What can be done?

The justification for intervention

One objection that is often made to doing anything to remedy this problem is that any intervention would interfere with individual consumer choice. The immediate response to this is the fairly obvious one that there are advantages that are not related to individual preferences but to the general public good. The benefits the provision of private open space behind dwellings brings to the wider community include:

- aesthetic townscape;
- biodiversity;
- amenable microclimate, including shade in hot weather;
- absorption of run-off in wet weather.

In other words, it is part of an environment whose sustainability and quality affect everyone, not just the individual residents.

There is also the issue which, within public policy, is peculiar to town planning, the desirability of the long-term robustness of urban form. Dwellings are not like other consumer products such clothes, household appliances, home entertainment, even furniture. They last very much longer. They may last for at least 60 years and, possibly, many centuries. The road layouts may last as long, if not longer. Well-planned housing schemes should be designed to be robust over time. In other words, they should be able to adapt to changing patterns of use without major reconstruction. While it may difficult for a particular urban form to necessarily promote a particular activity, it is very easy for it to prevent something. For example, a housing layout cannot, of itself, guarantee that a bus service will be provided but it can make such provision very difficult or even impossible. The argument against the absence of private open space behind dwellings should not turn on whether or not people want to make use of at present. The argument is that it rules out this use permanently. Large areas of suburban housing have been built, and continue to be built, that can never possess the outdoor facilities that this space permits. Similarly, view and outlook are not benefits that can be retrofitted at a later date without widespread demolition. It would also be difficult to retrofit natural light and ventilation to single-storey deep-plan or square-plan houses. Even if current residents do not want an outlook, garden, swimming pool or barbeque terrace why should these amenities be ruled out in perpetuity?
Action through the planning system

A general characteristic of the planning systems of both North America and Australasia, when compared to those of Europe, is that although there may be a reluctance to intervene in the design of development they nevertheless possess plentiful regulations for its control. There is therefore scope for design intervention through the planning system in Australia if there is a political will and if it can be appropriately steered and focused.

Ideally, there should be moves to achieve a far higher standard of residential design on a comprehensive basis, so that the issue of the provision of private amenity space is considered alongside all the other properties of a dwelling. The European experience suggests that this can be achieved if there is detailed guidance, consistency of policy over a wide area, consultation with developers at an early stage and, ultimately, the threat of compulsion. It must be remembered that current trends in Australian suburban house design, in particular the single-storey deep-plan house built on a concrete slab, are comparatively recent in historical context. Rather than constitute some radical departure, promotion of quality of design could represent more of a return to traditional Australian values. It should be emphasised that this something that could apply at all densities and locations.

Even in the absence of a comprehensive approach, there is a much that could be done merely by adjusting quantities within existing regulations. If maximum plot coverage was set at 35% then the evidence discussed in this paper shows that the problem would effectively be solved. To achieve the amount of floor space that they do at present, purchasers would have to pay more and build to two storeys. Failing this, they would have to accept less floorspace. However, the indications are that they have no functional need for this floor area, nor does it benefit their lifestyle, rather it is pursued as a financial investment. If the policy were applied uniformly, then expenditure on two storeys would still represent an investment.

Failing a restriction on maximum plot coverage, merely specifying a minimum distance from the back of the dwelling to the rear plot boundary of, say, 8m, would make a significant difference. For a 10m wide plot it would give 80m² back yard and at wider plots approximately 100m² or more. This was the actual provision for some of the houses in some of the examples studied. At Port Adelaide it was achieved for all dwellings at a density of 25 dph. If necessary it could be compensated for by a reduction in the front set-back, as at Port Adelaide. It should also be noted that current front set-backs normally result in fairly large, planted, front gardens, a circumstance which appears to be accepted by all parties.

Conclusion

Within the past 10 years private amenity space has largely disappeared from the rear of new suburban houses in Australia. This is characterised by an increase in plot coverage from 30-40% to 50-60% or even more. The change appears both permanent and uniform, as it is to be found in all major Australian cities, except Adelaide. It appears to be confined to Australia, in other parts of the world where back gardens have been standard features, North America, New Zealand, Northwest Europe, this trend is not to be found. The outer suburban landscape in Australia has ceased to be one of large gardens with trees. Such landscapes are now confined to the inner suburbs. This trend represents a loss that has serious ecological implications. It also raises important questions about lifestyles changing for the worse, a trend rendered permanent by the changes to the housing stock.

This phenomenon does not result from urban consolidation, smaller plots and higher densities. It is most obvious in the car-based development on the extremities of cities, a long way from city centres. Whatever the size of plot, the dwelling now extends over nearly the whole area except
where a front set-back is required. It is a feature of low-cost housing which provides extensive floor area but not high standards of amenity and lifestyle, in marked contrast to contemporary housing in city centres. It has its origins in a situation where the plot is purchased separately from the house. The incentive is now to maximise floor area for the lowest cost, rather than to maximise amenity.

There has been little comment on what is happening in either professional or public circles, let alone any action by planning authorities to prevent it. Nevertheless, even minor amendments to local regulations on how plots are developed could bring about a significant change for the better. In the longer term, however, what is need is an awakening of a general concern for better residential design and comprehensive action to secure higher quality in the future.
References

ABS (2005) Year Book Australia no. 87, catalogue no. 1301.0, Canberra: ABS
Mead, Jeffrey (2000) *The Suburban Backyard: Its Meaning and Use in the Contemporary Suburb*, Unpublished dissertation submitted for the degree of Bachelor of Town Planning at UNSW
Relationships Forum Australia Inc (2007) *An Unexpected Tragedy: Evidence for the connection between working patterns and family breakdown In Australia*
Timms, Peter (2006) *Australia's Quarter Acre*, Melbourne University Publishing